a variational approach. As shown in Figure 1 of the present discussion the values obtained in reference [1] agree admirably well with those determined in reference [3] indicating extremely high accuracy of the approach developed in reference [1].

ACKNOWLEDGMENT

The present study has been sponsored by Secretaría General de Ciencia y Tecnología of Universidad Nacional del Sur and by CONICET. Miss C. Pistonesi has been supported with a CONICET Fellowship.

REFERENCES

- 1. A. SELMANE and A. A. LAKIS 1990 *Journal of Sound and Vibration* **220**, 225–249. Natural frequencies of transverse vibrations of non-uniform circular and annular plates.
- 2. R. V. BODINE 1959 *Journal of Applied Mechanics* 26, 666–668. The fundamental frequencies of a thin flat circular plate simply supported aling a circle of arbitrary radius.
- 3. P. A. A. LAURA, R. H. GUTIÉRREZ, S. A. VERA and D. A. VEGA 1999. *Journal of Sound and Vibration* 223, 842–845. Transverse vibrations of a circular plate with a free edge and a concentric circular support.

AUTHOR'S REPLY

A. A. LAKIS

Départment de Genie Mécanique, Ecole Polytechnique de Montreal, C.P. 6079, Succursale Centre Ville, Montreal, Quebec, Canada H3C 3A7

(Received 24 August 1999)

We thank Professor Laura and his co-authors for the useful comments that they made in their Letter to the Editor [1]. Their additional results provide a useful validation of results published in reference [2].

REFERENCES

- P. A. A. LAURA, R. H. GUTIÉRREZ and C. PISTONESI (2000) Journal of Sound and Vibration 230, 447–448. Comments on "Natural frequencies of transverse vibrations of non-uniform circular and annular plates".
- 2. A. SELMANE and A. A. LAKIS 1999 *Journal of Sound and Vibration* **220**, 225–249. Natural frequencies of transverse vibrations of non-uniform circular and annular plates.

448